Kyocera Introduces Multi-Layer Ceramic Capacitors for High-Reliability Military Applications

Kyocera Introduces Multi-Layer Ceramic Capacitors for High-Reliability Military Applications

KYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, is proud to announce that its MIL-PRF-32535 BME NP0 MLCCs have been approved to the Defense Logistics Agency (DLA) Qualified Products Database (QPD).

The new MIL-PRF-32535 BME NP0 MLCCs have higher CV capabilities than standard surface-mount PME MLCCs qualified to military and aerospace specifications and are currently available in “M” and “T” reliability levels and 0402, 0603, and 0805 case sizes and rated for 68–1,500pF and 4–100V. These small, high-CV MLCCs enable revolutionary board space, weight, and component count reductions. They also feature KYOCERA AVX’s patented FLEXITERM termination technology, which, compared to standard terminations, significantly enhances resistance to the thermomechanical stresses experienced during assembly and operation.

MIL-PRF-32535 BME NP0 MLCCs are approved for use in high-reliability military and aerospace applications including filtering, tuning, decoupling, timing, and blocking circuits.

“We have been honing and perfecting best-in-class BME MLCC technology since the 1990s and are proud to further extend our portfolio of tested and proven high-CV solutions qualified for use in high-reliability military and aerospace applications,” said Michael Conway, Product & Marketing Manager – High-Reliability Components, KYOCERA AVX. “The new MIL-PRF-32535 BME NP0 series is the latest development in our enduring mission to meet our high-rel customers’ needs. It satisfies a growing demand for smaller, high-CV, military-qualified capacitor technology, and we will continue to expand this product range and this portfolio to meet the ever-evolving demands of the global military and aerospace industry.”

Click here to learn more about M3253503E1A152KRTB\1